

Top of Minds Report series
Information Integration –

Hyper Agile Design Pattern for Data Warehouse

Introduction
In the Report “ToM Report Series on Information Integration
– IT Support of Business Agility” we looked at the idea of
building flexible information integration solutions, on a high
level, that could

● Quickly adapt to today’s fast moving business
environment

● “Absorb” new business information requirements
● Give the business users the power of how the

information should be translated into a common
business information view

● Ability to set up rules for how the information should
be used by business processes.

This report will focus on how to design a Hyper Agile Data
Warehouse.

We will look at different design patterns and how to combine
them to create a Hyper Agile Design Pattern. This pattern
can be used for many different information integration
solutions, Master Data, Data Warehouse, Operational
Information Integration etc.

Data Vault
Data Vault is one of the most flexible Data Warehouse
paradigms of today, invented by Dan Linstedt. Data Vault is
both a Data Warehouse methodology and a design pattern.
In this report we will have a quick look at the modelling
design pattern.

About the author

Patrik Lager is a senior specialist at
Top of Minds. Patrik is specialized
in data warehousing architecture,
information modeling, data
modeling and ETL design. He has a
long and vast experience from
working within bank & finance area
and also telecom.
Mr. Lager holds a BSc in Computer
Science from Linköping University.
He is a member of the Data Vault
Standardization Institute.

Comments on this white paper can
be sent to
patrik.lager@topofminds.se or
Twitter @PatrikLager

About Top of Minds

Top of Minds is a specialized
company that offers services in the
data warehousing and business
intelligence area. We are premier
partner in the Nordic countries on
the data warehouse development
using an agile approach where we
use Data Vault to increase the
benefits of the projects we
participate in. We are a company
with great focus on competence,
our expertise and our clients'
expertise and we are constantly
working to spread our knowledge.

See www.topofminds.se for further

 Copyright © 2011 Top of Minds. All rights reserved Page 2

Data Vault Concept and Structures
The core of the Data Vault modelling technique is the identification of the core business keys,
such as Product or Customer. All business keys, and only the business keys, are stored in a
specific table structure called a Hub. The business keys might have certain relationships,
such as that between an Order and a Customer. All business key relations, and only the
relations, are stored in another table structure called a Link. None of these, Hub or Link,
contain any history. Data Vault captures the existence of the Business key in the Hub or the
Link between business keys once and after that never changes it.

All descriptive data, for instance the name, address and telephone of a Customer or the date
and shipping information of an Order is stored in a third table structure called a Satellite. This
image, see Figure 1: A simple Data Vault Model, Figure 1 illustrates a typical small Data Vault
model.

Customer
HUB

Customer-Order
LINK

Order-Product
LINK

Order
HUB

Product
HUB

Customer
Satellite

Product
Satellite

Customer-Order
Satellite

Figure 1: A simple Data Vault Model

 Copyright © 2011 Top of Minds. All rights reserved Page 3

Data Vault agile design pattern
One of the major strengths of Data Vault is its agile structure; which makes it easy to create
a modular code base. Since the design pattern is very clean with few constructs, it is very
easy to repeat and reuse code for loading data into the tables. For more information about
loading strategies and their reusability see “ToM Report Series on Agile DW - Using
Informatica PowerCenter to automate your Data Vault”.

Data Vault has created a model/code pattern for scalability. The ETL code for the Hub, Link
and Satellite is self-contained. That way the ETL code becomes modular and the changes of
adding new business keys or relationships or attributes are contained within its specific
module of ETL code, not affecting other parts of the code.

By breaking out the descriptive data, which is most prone to change, from the business key
and put that into the Satellite, Data Vault “protects” the ETL code of Hubs and Links from
changes.

When adding new information/data to a business key, you can either add a new satellite or
add new attribute to the existing Satellite, depending on the nature of the information added.

So even there, Data Vault gives the choice of keeping the Satellite code unaffected, if
deciding to add a new Satellite to hold the new information instead of adding it to the existing
Satellite.

Designing the Hyper Agile DW

Hub and Link
The Hub and Link pattern from Data Vault has just the right modular building blocks to
support agile development. This creates a model built on the business keys used in the
company’s business processes. That will help the business to understand what information
they are working with at the Meta Data layer.

Satellite
A normal Data Vault Satellite is prone to code and table changes. Each time you want to add
more attributes to a business key, you either have to create a new Satellite or change the
existing one. This is not acceptable in a Hyper Agile solution.

Name Value Pairs
Name Value Pairs, Attribute Value Pairs or Key Value Pairs, will henceforth be called Name
Value Pairs, is a technique that creates a structure that, instead of being agile, is absorbing
new attributes. That means that new information/attributes that are added to a Business key
require no change in table or ETL code, it simply “absorbs” it.

A Named Value Pair Satellite has instead of a unique column per each attribute, a generic
column that holds the Attribute name and a generic column that holds the attributes value.

 Copyright © 2011 Top of Minds. All rights reserved Page 4

Let’s look at the difference. We can see here, see Figure 2: Normal Satellite Table, that for each
Business key and Load Date, which is the Primary Key, we have one row.

Normal Satellite
Business Surrogate
Key

Load Dts First
Name

Last
Name

Adress Age

1 2011-01-
01

Patrik Lager Ashenroad 42

2 2011-01-
01

Bengt Bengtsso
n

Knownroad 35

Figure 2: Normal Satellite Table

The Name Value Pair Satellite, see Figure 3: Name Value Pairs Satellite, has another structure.
For each Business Surrogate Key, Load Date and Name (Attribute), which is the Primary
Key, we have one row.

Name Value Pair Satellite
Business Surrogate
key

Load Dts Name Value

1 2011-01-
01

First
Name

Patrik

1 2011-01-
01

Last Name Lager

1 2011-01-
01

Adress Ashenroad

1 2011-01-
01

Age 42

2 2011-01-
01

First
Name

Bengt

2 2011-01-
01

Last Name Bengtsson

2 2011-01-
01

Adress Knownroad

2 2011-01-
01

Age 35

Figure 3: Name Value Pairs Satellite

Name Value Pairs can be designed in many different ways in a Data Vault model, for this
Report we simply use a satellite construct. Below, see Figure 4: Hub and Name Value Pairs
Satellite, is a Customer HUB with its Named Value Pairs Satellite.

 Copyright © 2011 Top of Minds. All rights reserved Page 5

Customer_HUB

PK Customer SK

 Customer BK
 Load Dts

Name Value Pairs SAT

PK,FK1 Customer SK
PK Load Dts
PK Name

 Value

Figure 4: Hub and Name Value Pairs Satellite

There are now the building blocks for our data model where we will store the source data.

The Architectural Layers
There are some aspects that are important to understand when designing this kind of
solution for a Data Warehouse. So let’s look at the different architectural layers and their
design rules.

Figure 5: Architectural Layer Overview

Staging Layer
The staging area is a temporary area where data is captured. There are three main purposes
of the Staging Area.

● Transform the data structures to Name Value Pairs
● Feed the Business Meta Data layer with attributes from the source systems
● Conform the data model to the EDW layer.

The data is source unique and has no information integration.

 Copyright © 2011 Top of Minds. All rights reserved Page 6

EDW Layer
The EDW model is a Data Vault skeleton model with Hub and Links and satellites of Name
Value Pairs design.

The main purpose of the EDW layer is to have all the source systems data to be co-located
in a common data model. There are some important aspects that differ from a “normal” Data
Vault or other Data Warehouse design patterns

● The data is held source unique, there are no business key integration in the hubs.
● The attribute names are the same as in the source system, no attribute consolidation
● The attribute values are held in the source systems raw format, there is no value

consolidation
● The only integration is that the information of different source systems is co-located

into the same Data Structures.
Example: Key Integration
If a two source systems sends customer information, their customer key will be stored in the
same hub, see Figure 6: Customer Hub Table. If they have the same business key, the solution
will still store them twice in the hub, each with its unique Customer Surrogate Key.

Customer Hub
Surrogate Key Business

Key
Load_Dts Source System

1 Patrik L 2010-01-
01

Customer system
1

2 Patrik L 2010-01-
01

Customer system
2

Figure 6: Customer Hub Table

Example: Attribute Integration
From an Attribute integration perspective; see Figure 7: Customer Name Value Pairs Satellite 1, if
both of these systems send information about the customer’s first name, the solution will
store that twice, once per each Customer Surrogate Key and with the unique attribute name
of the source system.

Customer Sat
Surrogate Key Load_Dts Name Value Source System
1 2010-01-01 F_NM Patrik Customer system

1
2 2010-01-01 First_nm Patrik Customer system

2
Figure 7: Customer Name Value Pairs Satellite 1

Example: Value/Code Integration
From a Value/Code integration perspective; see Figure 8: Customer Name Value Pairs Satellite 2, If
both of these systems send information about the customer’s country of birth and the
business want to see country according to the standard “ISO 3166-1 alpha-2” the data that
the source systems sends will be stored in the raw format even if it doesn’t follow the ISO
standard.

 Copyright © 2011 Top of Minds. All rights reserved Page 7

Customer Sat
Surrogate Key Load_Dts Name Value Source System
1 2010-01-01 Co_of_Birth Swede

n
Customer system
1

2 2010-01-01 Country_BRT
H

sw Customer system
2

Figure 8: Customer Name Value Pairs Satellite 2

All information integration work that normally happens in the ETL code when loading the data
tables, are now manage through a Meta Data Layer. Which means that the business will get
a “soft” information integration.

Business Meta Data Layer
The Business Meta Data layer has three main purposes.

● Hold the information of how all that data in the EDW is seen from an information
integration point of view. That means that Business Key integration, Attribute
Integration and Value Integration, they all happen in the Business Meta Data Layer,
see Figure 9: Meta Data Layer.

● Hold the rules on how the Data Marts are to be loaded
● Hold Meta Data on the source system tables, attributes and source systems domain

range values

All the Meta Data is historicized so changes in the Meta Data are captured.

Source Data

Attribute
IntegrationKey Integration Value Integration

Figure 9: Meta Data Layer

Look at the Data through the Meta Data
When accessing the raw data through the Business Meta Data layer you get the Enterprise
view of the data, as if it had been loaded and stored with key integration, attribute integration
and value integration in the Data tables.

If a user want to know the Country Of Birth for one of our customer, a certain Patrik Lager.

Key Integration would show the user that the two rows for Business key “Patrik Lager” in the
Customer Hub is really the same Customer. So only one row is returned for that Business
Key

From an Attribute Integration point of view the user would see that the source unique
attributes “Country_BRTH” and “Co_of_Birth” have been “mapped” to the same business
attribute, “Country Of Birth”

 Copyright © 2011 Top of Minds. All rights reserved Page 8

The Value Integration part would show the user that the values “Sweden” and “SW” both
point to the same domain value in “ISO 3166-1 alpha-2”, SE.

So the result of the query when translated by the Meta Data Layer would be Query Result 1

Query Result 1
Customer Attribute Value
Patrik Lager Country Of Birth SE

So instead of storing the integrated result of the integration rules in the data tables, they are
held in the Meta Data layer. Since the data itself is in its raw, source unique format in the
data table, the business can change the meaning of an Attribute, or change a key integration
etc in real time, without reloading the data, just by changing the Business Meta Data.

If a business user rather would see that the two source system attributes “Country_BRTH”
and “Co_of_Birth” should be integrated as the business attribute “Country Of Residence”.
The user would only need to change the Meta Data relation between the source systems
attributes so they pointed at “Country Of Residence” instead of “Country Of Birth”.

When asking for Customer “Patrik Lagers” Country of Residence the user would get Query
Result 2

Query Result 2
Customer Attribute Value
Patrik Lager Country Of

Residence
SE

The underlying data in the data table has not changed, only the business interpretation of it
without reloading anything.

At the same time, since the Meta Data holds the history of its rules, you can position yourself
by date and time to see how the integration looked before it was changed.

Mart Layer
The Mart Layer is an instantiation of the Business Meta Data Layer. Here the data is stored
according to the rules set up in the Business Meta Data Layer. What modelling technique
you use in the Mart Layer is depending on need. Each Mart can have its unique modelling
technique. It can be Dimensional modelling, Data Vault, 3NF etc. Whatever suits the usage
of the information in that specific Mart.

This layer will not be as flexible as the EDW layer, since we have loaded the data according
to the rules instead of keeping them “soft”. The reason for this is simply query performance.

It might be in the future there will be DBMS engines that are able to have query performance
without the need of instantiation of the rules. Then we will be even more flexible.

 Copyright © 2011 Top of Minds. All rights reserved Page 9

Conclusion
The Hyper Agile Design Pattern is a Meta Data driven pattern focusing on the flexibility of
absorbing new attributes into the Data Warehouse without any need of reengineering code or
tables up to the EDW Layer.

The solution also give the ability to change the meaning of business key integration, attribute
integration and value integration without and reengineering of code or reloading of data and
still have the ability to see how the information was integrated at a earlier date.

This will save the business a lot of time and money and at the same time have the ability to
set up the information integration rules on their own if they so wish.

If you found this Report interesting and want to hear more, please contact Top of Minds.

