

Top of Minds Report series
 Agile Data Warehousing -

Write generic code to limit codebase and gain
performance in Informatica PowerCenter

Recommended reading
For deeper insights in Data Vault modeling techniques using
Informatica PowerCenter see other publications at
http://topofminds.se/wp/aktuellt/publicerat/. One example that
can be of good use to get a more thorough picture of Data
Vault modelling in Informatica PowerCenter is ToM Report
Series on Data vault – Using Informatica PowerCenter to
automate your Data vault. Also, read the whitepaper about
hyper agile design pattern that takes generic coding to an
extreme; ToM Report Series on Information Integration - Hyper
Agile Design Pattern.

Background
Ever changing business needs and requirements are forcing
BI-projects to be more agile than ever before. The value of
“seeing the data” can’t be emphasized enough in a BI-project
which is why too rigid implementation processes and long
delivery sprints should be avoided. Data Vault is one of the
most flexible modelling techniques that is used today, much
thanks to its abilities to cope and adapt with fast changing
realities and increasing needs to extend existing data models.

When working with Data Vault or other ensemble modelling
techniques the different building blocks; Hubs, Links and to
some extent Satellites are well defined and all share a
common structure that can be used to build generic code. With
the use of generic code, the code base can be held to a
minimum and hence the time to value can be shortened. One
should be aware that one downside with generic code can be a
greater complexity and reduced data load speed if you aren’t
careful in the design and implementation.

This report will give the reader hands on design examples in
Informatica PowerCenter, to be used for writing generic, agile
code without losing performance in the data load. Because of
its suitability Data Vault is chosen to exemplify the
performance gain.

Target audience
This paper turns to people working with ETL
design/implementation and data warehouse modelling.

About the author

Daniela Björkbacke is a senior
specialist at Top of Minds with a
long experience from projects in
different business areas, ranging
from Retail to Logistics and
Banking. She has deep knowledge
in data modeling and architecture on
a higher level as well as design and
implementation of ETL-mappings
and workflows on a more detailed
level.

Comments on this white paper can
be sent to
daniela.bjorkbacke@topofminds.se
or
Twitter @bjorkbacke

About Top of Minds

Top of Minds is a specialized
company that offers services in the
data warehousing and business
intelligence area. We are premier
partner in the Nordic countries on
the data warehouse development
using an agile approach where we
use Data Vault to increase the
benefits of the projects we
participate in. We are a company
with great focus on competence, our
expertise and our clients' expertise
and we are constantly

 Copyright © 2014 Top of Minds. All rights reserved 2

From Source to Target
The coming sections will briefly describe how the source and target should/could be set up in
a generic environment. The source section covers how to parameterize the extraction and
how the load can be steered dynamically depending on the number of keys in the table. To
compare different design approaches and the performance, the target section in this
whitepaper, is split up in three scenarios. Each of the scenarios describes an implementation
of how to write to generic targets with varying load performance.

The examples are taken from an environment with Informatica PowerCenter and Oracle 11.

Generic sources
When the design of the data warehouse is to be done, think an extra time of the formats. If
the hubs, links and satellites can be designed with a common interface, a lot of the programs
can be generalized. For instance think about the data types of the keys, the name standard
etc.

A source in Informatica PowerCenter can be overridden to a large extent. The number of
keys in the source definition does not have to match the physical source, BUT the outgoing
ports in the SQL-qualifier and the forthcoming objects are fixed both when it comes to
number of ports and data type.

One way of overcome these limitations is to create a generic source or SQL-override with a
source that has sufficient number of keys and attributes to cover all types of satellites, links
or other components. In the example below, Figure 1, an SQL-override shows how to extract
data from a link with unknown number of business keys, numbered ‘BSN_KEY_1’ to
‘BSN_KEY_5’.

Figure 1: Generic source, override example. Source object to the left and SQL-override to the right.

As the figure shows, the SQL-override is completely generic and the mapping comes alive
first when the parameters are set in the parameter file. Here it is important to remember to
set the unused keys to a default string alternatively set an initial value in the parameter
wizard, to ensure that the dynamic sql-statement that is generated copes with an arbitrary
number of keys. See Figure 2 below for the two alternatives.

 Copyright © 2014 Top of Minds. All rights reserved 3

Figure 2: Initial values of the arbitrary number of keys in a generic source.

In the following steps of the mapping, the default string ‘NO_KEY’ (as seen in the example,
Figure 2) can be used to determine how many keys are used at runtime and hence decide
which generic target to use. One example of how the keys can be counted is by using
DECODE statement to add all keys that match the default key string to get a final sum of
keys, see example in Figure 3 below.

Figure 3: Determine the number of keys in an expression

The number of keys can be used in a router or in multiple filter transformations to route the
data stream to the corresponding target. See Figure 4 below.

Figure 4: Router is used to determine which generic target to use and which ports to connect.

 Copyright © 2014 Top of Minds. All rights reserved 4

Generic targets
If the names of the keys in the generic target representation in Informatica PowerCenter
don’t match the key names in the actual target table, which usually is a challenge with
generic mappings, the insert statement needs to be overwritten.

In the following sections, three scenarios will be presented where the override issue is
solved, with different performance as result. The scenarios range from poor performance to
high, where the least performing solution (scenario 1) is a possible design but presented in
this whitepaper merely as a baseline for the other scenarios and should not be considered a
recommendation.

The scenarios in this whitepaper cover a solution with inserts only. That is, the design is set
up in a way that makes sure that no updates of old records have to be carried out. The
reason for this is the performance; inserts are faster than updates. So if updates can be
omitted they should!

The three solutions cover:

a. Update override with Data driven load and “Update transformation”
b. Update override without “Update transformation”
c. Write to target view

Scenario1) Update override with Data driven load and “Update transformation”
Informatica PowerCenter does not support “insert overrides”, but there is a way to overcome
the shortage by using “update overrides” instead. With update overrides table and column
names can be set dynamically.

To trigger the insert/update override statement of the target, the mapping in this scenario has
an update transformation with the update strategy ‘DD_UPDATE’ set, see Figure 5 below:

Figure 5: Update transformation is set to ‘DD_UPDATE’

As stated above, there is no “Insert override” option, but by setting the update strategy to
‘DD_UPDATE’, the “Update override” section will be activated and the insert/update
statement will be generated dynamically.

 Copyright © 2014 Top of Minds. All rights reserved 5

See the figures below for activating the “Update override” option; both steps are necessary
for Scenario 1!

a. Set the load to Data driven (workflow designer, session level) (Figure 6)
b. Override the target table (Target definition, mapping designer) (Figure 7) with a

parameterized Insert statement (Figure 8)

Figure 6: Set session to be Data driven

Figure 7: Write the update override at the target

See example of an update override, which in-fact is an insert!

INSERT /*+ append */
INTO $$TGT_TBL
(
 $$LNK_SQN, $$SQN_1, $$SQN_2, $$SQN_3, $$SQN_4, $$SQN_5,
 BATCH_TIMESTAMP, RECORD_TIMESTAMP,
 SYSTEM_ID, FILE_ID, BATCH_ID
)
VALUES (
 :TU.LNK_SQN, :TU.SQN_1, :TU.SQN_2, :TU.SQN_3, :TU.SQN_4, :TU.SQN_5,
 :TU.BATCH_TIMESTAMP, :TU.RECORD_TIMESTAMP,
 :TU.SYSTEM_ID, :TU.FILE_ID, :TU.BATCH_ID
)

Figure 8: Generic target update override

 Copyright © 2014 Top of Minds. All rights reserved 6

Scenario 2) Update override without “Update transformation”
The mapping doesn’t have any Update transformation as in the previous scenario, but is
instead set to “Update” at session level to trigger the update override section of the target,
see Figure 9 below. By setting the load type to “Update” instead of “Data Driven” as in
Scenario 1, there is not necessary to evaluate each row in the load, instead one generic
approach is used for the whole batch, which is more efficient.

Figure 9: Set session to treat each row as Update

a. Set “Treat source rows as” to “Update” in the Workflow designer at session level.
b. Set up the target update strategy by ticking the “Insert” and “Update else Insert” and

make sure nothing else is enabled in the target settings, see Figure 10 below.
c. Override the target table as in Scenario1, Figure 8 above.

Figure 10: Settings for the load

 Copyright © 2014 Top of Minds. All rights reserved 7

Scenario 3) Write to target view
Create a view of all your physical target tables in the database with a common look of the
keys that matches your generic target definition in Informatica PowerCenter. See the
example below, Figure 11 where the target table SOR_CUSTOMER_LNK is used to make
the view V_SOR_CUSTOMER_LNK with the same number and name of the keys as the
target definition in Informatica:

Figure 11: View that matches the Informatica target definition

In the parameter file, set up the connection parameters and override the target view name.
Below follows an example how the parameter file may look like in the
SOR_CUSTOMER_LNK example:

Figure 12: Parameter file with overridden target and key names

Remove the Update Strategy Transformations from the mapping if there are any (as shown
in Scenario 2) and set the Target load type at session level to “Insert”, see Figure 13:

 Copyright © 2014 Top of Minds. All rights reserved 8

Figure 13: Set session to treat each row as Insert

Set the target update strategy in the session to “Insert “and “Update as Insert” as shown in
Figure 14.

Figure 14: Set load parameters

 Copyright © 2014 Top of Minds. All rights reserved 9

Run performance
When the three scenarios presented above were tested, very different performance results
were found. The test was carried out with the same data set for all three scenarios,
3 483 562 records.

As a benchmark for the data load, the writing was turned off, just to measure the reading
throughput. A speed of 87 000 rows/sec was measured.

Scenario 1 - Update override with Data driven load and “Update transformation”
Because of a very low throughput, less than 1000 rows/sec, the data load was aborted after
20 minutes.

Result: ~ 1 000 rows/sec

Scenario 2 - Update override without “Update transformation”
The data load was stopped after 30 minutes, but a general throughput could be read out of
the test, read and write with approximately 1300 rows/sec.
Result: ~ 1 300 rows/sec

Figure 15: Throughput for Scenario2

Scenario 3 - Write to target view
The entire load was finished in less than two minutes, with a throughput of nearly 37 000
rows/sec.
Result: ~ 37 000 rows/sec

Figure 16: Throughput for Scenario3

Performance evaluation
The first scenario used ‘Data Driven’ approach, in which Informatica PowerCenter uses
single row insert, which implies that every row is evaluated and treated separately, and thus
causing a longer load time. Single row processing should be avoided if possible!

In the second scenario, the load is set to ‘Insert’ which means that each row does not have to
be evaluated, and hence enables a multiple row processing. That is why the performance is
better. The third scenario, where a view is used, an even more effective load is achieved
because array insert is applied.

 Copyright © 2014 Top of Minds. All rights reserved 10

Conclusion
Generic code can limit the code base in a project. Future changes can be carried out fast
and safely because changes only have to be done in one place to affect all instances at
once. But generic should be used with caution! The code will most probably be more
complex and might cause slower loads if the design is carelessly done. Though, with a
thought through DW and ETL-design with conformed structures and well-defined name
standard, much time and money can be saved in development costs as well as load times.

The difference between various generic loading strategies can be a matter of hours in
loading time! With the strategy of writing to generic views the load can be up to almost 30
times faster than writing to generic targets with an Insert override. Writing to views implies
that more objects need to be created and maintained in the database, but if the
documentation and name standard is properly done this is a minor dilemma and should not
discourage from using this approach.

If you found this report interesting and want to hear more, please contact Top of Minds.

